

NASA Support for the Future Communications Study

Briefing #9 - Suggested Phase III Activities

Future Communications Study
Phase II End of Task Briefing

Structure and Content of the Presentations

Purpose

- This briefing describes proposed technology assessment activities for FCS Phase III
- These include
 - DME and Mode S Interference Measurements
 - New Detailed Technology Analyses
 - Detailed 802.16e Evaluation
 - Collection of Stakeholder Inputs and Final Technology Evaluation and Recommendations

DME and Mode S Interference Measurements

Objective

- Further characterization of DME and Mode S equipment interference performance against proposed modulation types for the FCS; particularly susceptibilities from the following types of equipment
 - CDMA
 - Pulsed Communications
 - MCM
 - Narrowband Digital

Approach

 This activity will consist of the six interrelated tasks shown in the figure

New Detailed Technology Analyses

Objective

- Detailed analysis of the suitability of Phase II recommended technologies as FRS solutions
 - WCDMA
 - Either B-VHF or E-TDMA
- These are the best performing technologies that have not yet been analyzed in detail
- The goal of this activity is to determine each of these technologies as fitting into one of the following categories as a FRS solution
 - A totally suitable existing technology for the FRS
 - A custom solution for the FRS to meet aviation needs
 - A hybrid technology solution

New Detailed Technology Analyses

Approach

- Each technology will be evaluated against the FCS Phase II developed criteria, and a list of any identified deficiencies and associated recommendations for change will be developed
- This effort will be performed in the following steps
 - Development of a detailed Concept of Use
 - Development of a Functional and Physical Architecture
 - Detailed Performance Assessment
 - Viability Assessment
- The defined architectures will be evaluated against the following criteria
 - Functional and performance requirements of the FRS as defined in the COCR
 - Maturity, cost and other relevant factors indicative of the viability of a technical solution
- A roadmap for standardization will be developed for technologies that appear to be particularly suitable

Continued 802.16e Evaluation

Objective

- Perform a detailed analysis of 802.16e OFDMA physical layer features that could enhance system performance in the airport surface movement area
- These features include:
 - HARQ
 - Fast feedback channel
 - Diversity sub-carrier permutations
 - Space-time coding
 - Use of MIMO and associated handover issues
 - Convolutional turbo codes

Approach

- Perform MATLAB Simulink analysis and modeling as appropriate to evaluate these features
 - These techniques would be modeled and studied in the context of the Ohio University airport surface channel models

Collection of Stakeholder Inputs and Final Technology Evaluation and Recommendations

Objective

Perform the final technology evaluation and develop appropriate recommendations

Approach

- The process for the final evaluation of the best performing technologies will combine technology performance assessment against derived criteria with synthesis of a wide range of stakeholder input/feedback to fully reflect stakeholder requirements
- This will be facilitated through a more extensive application of AHP to accommodate perspectives of additional stakeholders and provide a more refined decision analysis